论著

CTA联合超声心衰指数 在ICM所致心衰心功能 分级评估价值分析

陈梅娟1 张骄阳2,*

1.西安高新医院超声科 (陕西西安 710018) 2.榆林市第三医院影像科 (陕西榆林 718000)

【摘要】目的 探讨冠状动脉CT血管造影(CTA)联合 超声心衰指数在缺血性心肌病(ICM)所致心衰心功 能分级评估价值。方法 纳入2022年11月至2023年 11月经西安高新医院收治的ICM所致心衰患者90例 作回顾性研究,按纽约心脏病协会(NYHA)心功能 分级分作心功能Ⅰ级组、心功能Ⅱ级组、心功能Ⅲ 级组及心功能Ⅳ级组,均行冠状动脉CT血管造影 (CTA)及超声心动图检查,比较CTA参数联合超声 心衰指数在ICM所致心衰心功能分级评估价值。结 果 四组LVEF、超声心衰指数比较,差异有统计学 意义(P<0.05);与心功能 I 级组比较,心功能 II~IV 级组LVEF更低,超声心衰指数更高;与心功能 II 级 组比较,心功能III~IV级LVEF更低,超声心衰指数 更高;与心功能Ⅲ级组比较,心功能Ⅳ级LVEF更 低,超声心衰指数更高(P<0.05);经Pearman分析 结果显示: CTA参数中LVEF与NYHA心功能分级呈 高度负相关(r=-0.881),超声心衰指数与NYHA心功 能分级呈高度正相关(r=0.867); 冠状动脉CTA、超 声心衰指数单一及联合评估ICM所致心衰病情均有 一定诊断价值,尤以联合诊断价值最高,准确率为 91.11%,Kappa值为0.751。**结论** 冠状动脉CTA联 合超声心衰指数用于ICM所致心衰心功能分级评估 具有较高应用价值。

【关键词】缺血性心肌病;心衰;冠状动脉; CT血管造影;超声心衰指数 【中图分类号】R542.2 【文献标识码】A **DOI:**10.3969/j.issn.1672-5131.2025.08.028

Analysis of the Value of CTA Combined with Ultrasound Heart Failure Index in Evaluating the Classification of Heart Function in ICM induced Heart Failure

CHEN Mei-juan¹, ZHANG Jiao-yang^{2,*}.

1. Department of Ultrasound, Xi'an High-tech Hospital, Xi'an 710018, Shaanxi Province, China 2. Department of Imaging, Yulin Third Hospital, Yulin 718000, Shaanxi Province, China

ABSTRACT

Objective To explore the value of coronary CT angiography (CTA) combined with ultrasound heart failure index in evaluating the grading of heart failure caused by ischemic cardiomyopathy (ICM). Methods A retrospective study was conducted on 90 patients with ICM induced heart failure admitted to Xi'an High tech Hospital from November 2022 to November 2023. According to the New York Heart Association (NYHA) heart function classification, they were divided into three groups: Grade I heart function group, Grade II heart function group, Grade III heart function group, and Grade IV heart function group. Coronary CT angiography (CTA) and echocardiography were performed on all patients, and the value of CTA parameters combined with echocardiography heart failure index in evaluating the classification of ICM induced heart failure was compared. Results There was a statistically significant difference in LVEF and echocardiography heart failure index among the four groups (P<0.05); Compared with the Grade I heart function group, the LVEF of the Grade II-IV heart function group is lower and the echocardiography heart failure index is higher; Compared with the Grade II heart function group, LVEF of Grade III-IV heart function is lower and the heart failure index is higher on ultrasound; Compared with the Grade III heart function group, the LVEF of Grade IV heart function group was lower and the echocardiography heart failure index was higher (P<0.05); The results of Pearman analysis showed that there was a high negative correlation (r=-0.881) between LVEF and NYHA heart function grading in CTA parameters, and a high positive correlation (r=0.867) between ultrasound heart failure index and NYHA heart function grading; Coronary artery CTA, ultrasound heart failure index single and combined evaluation of ICM induced heart failure have certain diagnostic value, with the highest combined diagnostic value, accuracy of 91.11%, and Kappa value of 0.751. Conclusion The combination of coronary artery CTA and ultrasound heart failure index has high application value for the grading evaluation of heart function in ICM induced heart failure.

Keywords: Ischemic Cardiomyopathy; Heart Failure; Coronary Artery; CT Angiography; Ultrasound Heart Failure Index

缺血性心肌病(ICM)是因心肌长期缺血诱使纤维化改变的损害心脏收缩和/或舒张功能的一类临床综合征,核心症状见于心律失常、心衰等^[1]。在人口老龄化加剧及医疗技术提高的大背景下,ICM伴心衰病例日益增多^[2]。有研究证据表明轻度心衰患者早期死亡率约为5~10%,远低于重度心衰的30~40%^[3]。由此,准确评估ICM伴心衰患者病情严重程度,便于为适宜治疗方案制定及预后分析指导提供重要信息。目前,临床主要采用影像学检查方式,以计算机断层扫描(CT)及超声心动图最为常用,最初CT在ICM伴心衰病情评估价值有限,随仪器革新、技术发展,冠状动脉CT血管造影(CTA)应运而生,其具有无创、较高空间分辨率及三维成像处理能力等优势,不仅可及早准确评估冠状动脉狭窄程度,且对心脏结构及功能评价上具有一定价值^[4]。超声心动图一直作为心脏结构及功能评价首要检查方法,可提供心腔容积、室壁厚度、瓣膜功能及肺动脉高压等即时信息,基于超声心动图发展来的超声心衰指数便于为ICM伴心衰心功能评估提供客观依据^[5]。但CTA与超声心动图单一应用中仍有所局限,譬如CTA受"钙化伪影"干扰可能高估冠脉狭窄程度,一定程度上可影响心功能评估,至于超声心动图窗口不理想,在进行心功能评估时存在一定主观偏倚^[6]。基于此,本文旨在探讨冠状动脉CTA联合超声心衰指数在ICM所致心衰心功能评估的应用价值,报道如下。

1 资料与方法

1.1 一般资料 回顾性研究,以2022年11月至2023年11月经西安高新医院收治的ICM所致心衰患者90例为研究对象,其中男48例、女42例,年龄(58.29±8.13)岁。研究通过西安高新医院伦理委员会审查。

纳入标准:符合《稳定性冠心病基层诊疗指南(2020年)》中有关ICM标准^[7];满足《慢性心力衰竭基层诊疗指南(2019年)》中心衰标准^[8];符合CTA、超声心动图检查指征;临床资料齐备。排除标准:合并恶性肿瘤;伴发严重感染性疾患;精神认知异常;肝肾重度不全。

1.2 心功能分级标准 纽约心脏病协会(NYHA)心功能分级标准如下。(1) I 级:活动不受限制,休息及活动不引起心绞痛、心悸及乏力等症状;(2) II 级:活动受限轻度,休息时无症状表现,活动时表现心绞痛、心悸及乏力等症状,短暂休息可自行缓解;(3) III 级:活动受限明显,休息时无症状,轻微运动即出现心绞痛、心悸及乏力等症状,需较长时间休息方可得到缓解;(4) IV 级:无法从事活动,且休息时便存在心绞痛、心悸或乏力等症状,且活动时症状加剧。

本研究将研究对象分为心功能 I 级组(n=9例)、心功能 II 级组(n=15例)、心功能 II 级组(n=40例)及心功能 IV 级组(n=26例)。

1.3 检查方法

1.3.1 冠状动脉CTA检查 患者均使用DefIniton DS型螺旋CT机(德国Siemens公司)实施CTA检查。于检查前禁食4h,指导患者呼吸

训练,叮嘱患者屏气行气管分叉部至心脏膈面区域扫描,参数设置:管电压120kV,管电流300mAs,准直宽度:0.625mm,层厚0.5cm,矩阵512×512,视野220×220。采用双筒高压注射器行370mg/mL欧乃派克[国药准字:H20000591,厂商:通用电气药业(上海)有限公司]自右肘正中静脉或贵要静脉注射,调节流速5.0mL/s,等速追加35mL氯化钠溶液。

待扫描完成,采用心电门控技术,选择75%时相重组横轴面图像,若图像质量不佳,可酌情选取冠脉壁显示相对清除且管腔均匀散布的其他时相。将数据传入后处理工作站,而后运用真实圆锥线速算法、曲面重组、多平面重组及最大密度投影等技术进行三维重建。采用左室功能评估软件计算左心室射血分数(LVEF)。由2名高年资(工作年限12年、15年)影像医师完成。典型图像见图1。

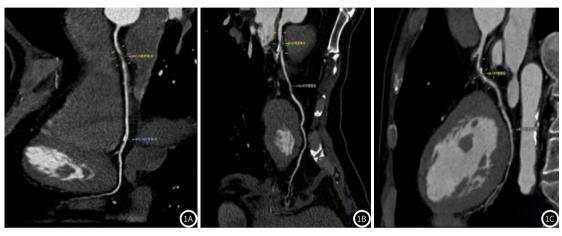


图1A~图1C 男,61岁,胸痛就诊,CTA影像图。1A:右冠近段非钙化斑,管腔重度狭窄,右冠远段管壁钙化斑,管腔轻度狭窄;1B:左回旋支近段混合斑块,管腔中度狭窄,远段钙化斑,管腔轻度狭窄;1C:左前降支近段混合斑块,管腔重度狭窄,中段非钙化斑,管腔中度狭窄。

1.3.2 超声心动图检查 采用IE33型超声心动仪(美国Philips公司)及适配探头(频率1.0~5.0MHz)。

指导患者呈侧卧位,充分暴露前胸,使用探头逐次扫查胸骨旁左室长轴、左心室短轴、心尖两腔、心尖四腔、心尖五腔、等切面,观察心腔容积,房室大小、形态及血管内径,室壁厚度、结构及运动幅度,瓣膜形态、开闭及反流、肺动脉高压情况。依据ESC制定的超声心衰指数评分标准^[9]:从心腔容积、心室收缩及舒张功能、室壁厚度、肺动脉高压、瓣膜功能5方面进行评估,每方面计分1~2分,总分10分,评分越高,提示心衰程度越严重,检查均由2名高年资(工作年限8年、11年)超声医师完成。

1.4 统计学处理 采用SPSS 22.0软件行统计处理,计量资料以 " $\bar{\mathbf{x}}$ 生 \mathbf{s} " 表示,行F分析,计数资料以 "%" 表示,行 \mathbf{x} ²检验,采用Pearman分析CTA参数、超声心衰指数与NYHA心功能分级的相关性,行Kappa检验分析冠状动脉CTA、超声心衰指数单一及联合评估ICM所致心衰病情的一致性,若Kappa值 \mathbf{x} 0.8,提示一致性较佳,若Kappa值处于0.4~0.8之间,提示一致性一般,若Kappa值 \mathbf{x} 0.4,提示一致性差。若P<0.05,差异有统计学意义。

2 结 果

- **2.1 四组CTA参数比较** 经F分析,四组LVEF比较,差异有统计学 意义(P<0.05); 心功能 $II \sim IV$ 级组LVEF低于心功能 I 级组,心功能 $II \sim IV$ 级组,心功能 IV 级LVEF低于心功能 II 级组,心功能 IV 级LVEF低于心功能 II 级组(P<0.05),具体见表1。
- **2.2 四组超声心衰指数比较** 经F分析,四组超声心衰指数比较,差异有统计学意义(P<0.05);心功能 $II \sim IV$ 级组超声心衰指数高于心功能 II 级组(P<0.05);心功能 $III \sim IV$ 级超声心衰指数高于心功能 II 级组(P<0.05);心功能 IV 级超声心衰指数高于心功能 III 级组(P<0.05);心功能 IV 级超声心衰指数高于心功能 III 级组(P<0.05),见表2所示。

表1 四组CTA参数比较

组别	LVEF(%)
	50.81±6.03
心功能 II 级组(n=15例)	38.24±5.47 ^a
心功能III级组(n=40例)	29.35±4.92 ^{ab}
心功能Ⅳ级组(n=26例)	20.16±4.15 ^{abc}
F	102.405
Р	0.000

注:与心功能 [级组比较, a: P<0.05; 与心功能 [[级组比较,

b: P<0.05; 与心功能III级组比较, c: P<0.05。

表2 四组超声心衰指数比较

组别		超声心衰指数(分)	
心功能Ⅰ级组(n=9	例)	1.89±0.74	
心功能 II 级组(n=1	5例)	2.73 ± 0.59^{ab}	
心功能III级组(n=4	0例)	4.01 ± 0.68^{ab}	
心功能IV级组(n=2	6例)	6.42 ± 0.92^{abc}	
F		121.809	
Р		0.000	

注:与心功能 Ⅰ级组比较,a: P<0.05;与心功能 Ⅱ级组比较,

b: P<0.05; 与心功能Ⅲ级组比较, c: P<0.05。

2.3 CTA参数、超声心衰指数与NYHA心功能分级的相关性 经 Pearman分析结果显示: CTA参数中LVEF与NYHA心功能分级呈 高度负相关(-0.881),超声心衰指数与NYHA心功能分级呈高度正相关(r=0.867),见表3所示。

2.4 冠状动脉CTA、超声心衰指数单一及联合评估ICM所致心衰病情诊断价值 冠状动脉CTA、超声心衰指数单一及联合评估ICM所致心衰病情均有一定诊断价值,尤以联合诊断价值最高,准确率为91.11%,Kappa值为0.751,具体见表4~6。

表3 CTA参数、超声心衰指数与NYHA心功能分级的相关性

 参数	心功	能
	r	Р
LVEF	-0.881	<0.01
超声心衰指数	0.867	< 0.01

表4 冠状动脉CTA单一评估ICM所致心衰病情诊断价值

检查方法		NYHA分级				合计	准确率	Kappa值
		I级	II级	III级	IV级			
冠状动脉CTA	I级	6	2	0	0	8	80.00	0.466
	II级	2	10	2	0	14		
	III级	1	3	34	4	42		
	IV级	0	0	4	22	26		
合计		9	15	40	26	90		

表5 超声心衰指数单一评估ICM所致心衰病情诊断价值

 检查方法			NYHA分级				准确率	Kappa值
		Ι级	II级	III级	IV级			
超声心衰指数	I级	7	2	0	0	9	84.44	0.580
	II级	2	11	3	0	16		
	III级	0	2	35	3	40		
	IV级	0	0	2	23	25		
合计		9	15	40	26	90		

表6 冠状动脉CTA联合超声心衰指数评估ICM所致心衰病情诊断价值

 检查方法			NYH	A分级	合计	准确率	Kappa值	
		I级	II级	III级	IV级			
联合	Ι级	7	1	0	0	8	91.11	0.751
	II级	2	13	2	0	17		
	III级	0	1	37	1	39		
	IV级	0	0	1	25	26		
合计		9	15	40	26	90		

3 讨 论

冠脉狭窄或堵塞可引发心肌缺血,在长时间持续作用下可导致ICM发生,由于ICM是导致心衰主要原因,故ICM伴心衰患者于临床多见。但目前临床治疗ICM伴心衰患者尚未统一意见,通常依据心脏损伤程度选择药物或手术治疗。由此,及早准确评估ICM伴心衰患者心功能情况十分重要^[10]。

目前,临床用于心功能评估的影像技术主要有超声心动图及CTA,凭借操作简易、费用低廉的超声心动图为心功能评估一线检查手段,通过多个切面扫描并规范化采集图像,可清晰显示心脏结构,进而提供心腔容积,房室大小、形态及血管内径,室壁厚度、结构及运动幅度,瓣膜形态、开闭及反流、肺动脉高压等关键信息,而后计算超声心衰指数,在ICM伴心衰患者心功能分级评估上具有可靠价值。由本文结果发现随心功能分级提高,超声心衰指数随之上升,且经相关性分析呈高度正相关。与既往研究相符^[11]。但由于空间分辨率有限,且在假定左室几何体积恒定前提下进行感兴趣区(ROI)勾画,可能与实际值有一定偏差,进而无法准确评估心功能分级^[12]。CTA在评价冠状动脉狭窄具有确切

临床价值,而ICM伴心衰患者冠脉狭窄或堵塞是导致心功能受损主要原因,主要机制为冠脉狭窄或堵塞会使管腔缩小甚至闭塞,进而导致心肌运动功能障碍及心功能损害^[13]。

此外,CTA亦可对心脏结构及功能进行评估,譬如室壁运动异常方面,有研究证实CTA较超声心动图具有一定优势,虽在右冠状动脉区域灵敏度稍低(52.0%),但左前降支及左回旋支灵敏度较高,依次分78.0%、85.0%^[14]。且同样可以测定LVEF等心功能参数,虽然较超声心动图后处理软件计算方式不同,但由本文结果显示不同心功能分级间CTA测量的LVEF比较差异有统计学意义,且经相关性分析均呈高度负相关。提示应用CTA测定的心功能参数亦具有临床参考价值。不过,CTA应用亦存在一定局限,即当冠脉出现严重且弥漫性钙化时,不可避免受到"钙化伪影"的干扰导致狭窄程度过度高估^[15]。

以肝动脉供血为主,导致PVIC显著下降和AIF显著增高^[19-20]。本研究发现,Ia、Ip、AIF、PVIC与乙肝肝硬化患者肝功能分级均呈显著相关性,可见双能CT碘图能够通过定量分析肝脏血流灌注情况,帮助评价患者肝脏储备功能情况。Child-Pugh分级长期用于肝硬化肝功能储备功能的评估中,但部分指标波动较大,且分级较窄,同一分级患者病情可能存在显著差别,影响评估准确性,无法完全满足临床肝硬化肝功能分级需要^[21]。AIF、PVIC作为评价肝动脉血流动力学改变的重要参数,可精准测量也少受人为因素影响,且AIF、PVIC能够较好反映肝血供与肝功能恶化状况,为准确评估肝硬化患者肝功能提供了重要依据。

综上,双能CT碘图获得的Ia、Ip、AIF、PVIC参数可反映肝血流灌注和动力学改变,且Ia、Ip、AIF、PVIC参数与患者肝脏储备功能分级有关,为临床评估乙肝肝硬化患者肝功能状况提供了重要依据。

参考文献

- [1] 马蓉霞, 张文杰, 杨晓娟, 等. 不同病因肝硬化患者临床特征及其预后影响因素分析 [J]. 现代生物医学进展, 2023, 23(19): 3683-3689.
- [2] 刘桐池, 鄂林宁, 武志峰. 双源CT细胞外体积分数评估肝硬化严重程度及食管静脉曲 张的价值[J]. 中国临床医学影像杂志, 2023, 34(5): 353-359.
- [3] Laroia ST, Yadav K, Kumar S, et al. Material decomposition using iodine quantification on spectral CT for characterising nodules in the cirrhotic liver: a retrospective study[J]. Eur Radiol Exp, 2021, 5(1): 22.
- [4] 汪开允, 黄艳丽, 张倩雅. 超声肝动脉血流参数对肝硬化患者临床分期的诊断价值 [J]. 中西医结合肝病杂志, 2023, 33(8): 728-731.
- [5]李琳,朱宏英,杜合娟.实时三维超声诊断肝硬化患者左心功能、门静脉血流动力学与肝功能严重程度的相关性分析[J].海南医学院学报,2019,25(12):944-947.
- [6] 中华医学会肝病学分会. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425.
- [7] 周薇薇, 黄俊,潘发明. 慢性乙型肝炎流行病学特点和治疗药物研究进展[J]. 长春中 医药大学学报, 2022, 38 (12): 1420-1424.

- [8] 纪凤颖, 佟滨, 张琳焓, 等. 肝硬化CT诊断的研究进展[J]. 现代生物医学进展, 2019, 19 (7): 1395-1397.
- [9] Elbanna KY, Mansoori B, Mileto A, et al. Dual-energy CT in diffuse liver disease: is there a role? [J]. Abdom Radiol (NY), 2020. 45 (11): 3413-3424.
- [10]金良红,李兴杰,关红博,等. 双能量CT碘定量结合动态对比增强MRI评估肝硬化患者 肝脏血流动力学和肝功能临床价值研究[J]. 实用肝脏病杂志, 2019, 22(5): 712-715.
- [11] Hong S, Kim JE, Cho JM, et al. Quantification of liver extracellular volume using dual-energy CT for ruling out high-risk varices in cirrhosis[J]. Eur J Radiol, 2022, 148: 110151.
- [12] 唐永强, 石磊, 李剑, 等. 双能量CT碘图评估肝硬化血流灌注的可行性分析[J]. 中国 医疗设备, 2017, 32(11): 15-17, 27.
- [13] Bak S, Kim JE, Bae K, et al. Quantification of liver extracellular volume using dual-energy CT: utility for prediction of liver-related events in cirrhosis [J]. Eur Radiol. 2020, 30 (10): 5317-5326.
- [14] 魏海云,周舟. 肝硬化患者肝脏双能CT碘图定量参数与肝脏储备功能的关系[J]. 中华实用诊断与治疗杂志, 2023, 37(1): 93-96.
- [15] 项改生, 姜增誉, 陈文青, 等. 能谱CT在肝脏疾病中的研究新进展[J]. 中国CT和MRI杂志, 2021, 19 (7): 178-180.
- [16] Bottari A, Silipigni S, Carerj ML, et al. Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis[J]. Radiol Med, 2020, 125(1):7-14.
- [17]王瑶, 马春芬, 王国华, 等. 能谱CT在肝硬化肝功能分级中的应用价值[J]. 中国临床 医学影像杂志, 2022, 33(11): 779-783.
- [18] Kokubo R, Saito K, Yamada T, et al. Comparison of liver fibrosis and function indices with extracellular volume using dual-energy CT: a retrospective study[J]. Curr Med Imaging, 2022, 18(11):1180-1185.
- [19] 石桥, 谢婷婷, 袁知东, 等. 双能量CT碘定量参数评估肝硬化患者肝脏血流灌注重分布及肝功能的临床价值[J]. 放射学实践, 2017, 32(7): 734-738.
- [20] Nagayama Y, Kato Y, Inoue T, et al. Liver fibrosis assessment with multiphasic dual-energy CT: diagnostic performance of iodine uptake parameters [J]. Eur Radiol, 2021, 31 (8): 5779-5790.
- [21] 李丹丹, 杜燕娥, 段亮, 等. 肝硬化相关血清学指标与Child-Pugh分级的关系 [J]. 重 庆医科大学学报, 2019, 44(3): 336-339.

(收稿日期: 2025-01-07) (校对编辑:姚丽娜、韩敏求)

(上接第104页)

由此,本文进一步分析超声心动图及CTA单一及联合用于ICM伴心衰患者心功能分级评估价值。由结果显示:超声心动图及CTA单一用于ICM伴心衰患者心功能分级具有一定评估价值,以超声心动图稍优,但仍存在一定假阴性、假阳性。且行联合评估时发现准确率及Kappa值均有提升,依次为91.11%,0.751。表明超声心动图联合CTA评估ICM伴心衰患者心功能分级具有较高应用价值,但针对心功能 I 级、II 级评估不够理想,原因可能与心功能损伤早期相关心功能参数并出现异常有关。

综上所述:冠状动脉CTA联合超声心衰指数用于ICM所致心衰心功能分级评估具有较高应用价值,可作普及推广。

参考文献

- [1] Ko KY, Wang SY, Yen RF, et al. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy [J]. J Nucl Cardiol, 2020, 27(1): 269-279.
- [2]中国心血管健康与疾病报告编写组.中国心血管健康与疾病报告2022概要[J].心脑血管病防治,2023,23(7):1-19,24.
- [3] 顾晓薇. 心衰超声指数联合血清学指标在心力衰竭患者病情评估中的应用价值[J]. 北华大学学报(自然科学版), 2022, 23(4): 494-499.
- [4] Di Bella G, Pizzino F, Donato R, et al. Advanced non-invasive imaging techniques in chronic heart failure and cardiomyopathies: focus on cardiac magnetic resonance imaging and computed tomographic[J]. Adv Exp Med Biol, 2018, 1067: 183-196.
- [5] 国家老年医学中心国家老年疾病临床医学研究中心,中国老年医学学会心血管病分会,北京医学会心血管病学会影像学组.中国成人心力衰竭超声心动图规范化检查

专家共识[J]. 中国循环杂志, 2019, 34(5): 422-436.

- [6] Hamon M, Geindreau D, Guittet L, et al. Additional diagnostic value of new CT imaging techniques for the functional assessment of coronary artery disease: a meta-analysis [J]. Eur Radiol, 2019, 29 (6): 3044-3061.
- [7] 中华医学会,中华医学会杂志社,中华医学会全科医学分会,等. 稳定性冠心病基层 诊疗指南(2020年)[J]. 中华全科医师杂志, 2021, 20(3): 265-273.
- [8]中华医学会,中华医学会杂志社,中华医学会全科医学分会,等.慢性心力衰竭基层 诊疗指南(2019年)[J].中华全科医师杂志,2019,18(10):936-947.
- [9] Price S, Platz E, Cullen L, et al. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure[J]. Nat Rev Cardiol. 2017. 14 (7): 427-440.
- [10] Pan JA, Patel AR. The role of multimodality imaging in cardiomyopathy [J]. Curr Cardiol Rep, 2024, 16.
- [11] 李洪幸, 杜小岳, 张冰. 心衰超声指数评价慢性心力衰竭患者心脏功能的临床价值 [J]. 医学影像学杂志, 2020, 30(9):1607-1610.
- [12] 杨丽萍, 王可铮, 曹绍东, 等. 缺血性心肌病的多模态心血管影像学方法进展 [J]. 现 代生物医学进展, 2018, 18 (21): 4173-4176.
- [13] 周贺民, 王嬴, 张娜. 多层螺旋CT在评估冠状动脉重度狭窄患者心功能中的应用 [J]. 中国CT和MRI杂志, 2017, 15 (12): 44-47.
- [14] Aziz W, Claridge S, Ntalas I, et al. Emerging role of cardiac computed tomography in heart failure[J]. ESC Heart Fail, 2019, 6(5): 909-920.
- [15] Wang J, Chen HW, Fang XM, et al. Myocardial CT perfusion imaging and atherosclerotic plaque characteristics on coronary CT angiography for the identification of myocardial ischaemia[J]. Clin Radiol, 2019, 74 (10): 763-768.

(收稿日期: 2024-05-22) (校对编辑:姚丽娜、韩敏求)