论著

超高分辨率冠状动脉 CT血管造影的可行性 和图像表征研究*

魏本国^{1,*} 曹涤非²

- 黑龙江省北大荒集团建三江医院影像科 (黑龙江佳木斯 156300)
- 2.黑龙江省科学院高技术研究院

(黑龙江 哈尔滨 151300)

【摘要】目的 评估CT (CT)在高冠状动脉钙负荷患者 的超高分辨率冠状动脉计算机断层血管造影(CCTA) 的可行性和质量。方法 纳入20例患者接受PCD-CCTA,使用离散视觉量表评估图像噪声和冠状动脉 斑块和邻近血管腔,表征图像噪声纹理。结果 CCTA 在所有患者中都是可行的。在Bv40核和0.6 mm层 厚重建的患者中,虚化伪影最大(55.2%±9.8%), 血管锐度最低(477.1±73.6 ΔHU/mm), 信噪比最 高(27.4±5.6), CNR最高(32.9±6.6), 噪声最低 (17.1±2.2 HU)。考虑到薄片厚度为0.2mm的重 建,图像噪声、信噪比、CNR、血管清晰度和虚化 伪影在不同核之间存在显著差异(P<0.001)。随着内 核清晰度的提高,信噪比和CNR不断降低,图像噪 声和血管清晰度增加,其中Bv89内核的清晰度最高 (2383.4±787.1 ΔHU/mm)。结论 超高分辨率CCTA 结合CT是可行的,可以实现钙化冠状动脉的可视 化,图像质量好,清晰度高。

【关键词】CT;冠状动脉钙化;

超高分辨率冠状动脉计算机断层血管造影 【中图分类号】R543.5

【文献标识码】A

【基金项目】黑龙江省自然科学基金(LH2022H046) DOI:10.3969/j.issn.1672-5131.2024.08.019

Feasibility and Image Characterization of Ultra High Resolution Coronary CT Angiography*

WEI Ben-guo^{1,*}, CAO Di-fei².

- 1.Imaging Department of Jiansanjiang Hospital of Beidahuang Group in Heilongjiang Province, Jiamusi 156300, Heilongjiang Province, China
- 2.Institute for Advanced Technology of Heilongjiang Academy of Sciences, Harbin 151300, Heilongjiang Province, China

ABSTRACT

Objective To evaluate the feasibility and quality of dual photon count detector CT (CT) in ultra-high resolution computed tomography angiography (CCTA) of coronary arteries in patients with high coronary calcium burden. **Methods** Twenty patients who underwent PCD-CCTA were included, and the discrete vision scale was used to evaluate image noise, coronary artery plaques, and adjacent vascular lumens, characterizing image noise texture. **Results** CCTA is feasible in all patients. In patients with Bv40 nucleus and 0.6 mm layer thickness reconstruction, the maximum blurring artifacts (55.2% \pm 9.8%) and the lowest vascular sharpness (477.1 \pm 73.6%) were observed Δ HU/mm, with the highest signal-to-noise ratio (27.4 \pm 5.6), the highest CNR (32.9 \pm 6.6), and the lowest noise (17.1 \pm 2.2 HU). Considering the reconstruction with a thin slice thickness of 0.2 mm, there are significant differences in image noise, signal-to-noise ratio, CNR, vascular clarity, and blurred artifacts among different nuclei (P<0.001). With the improvement of kernel clarity, signal-to-noise ratio and CNR continue to decrease, while image noise and vascular clarity increase. Among them, Bv89 kernel has the highest clarity (2383.4 \pm 787.1) Δ HU/mm). **Conclusion** The combination of ultra-high resolution CCTA and CT is feasible, which can achieve visualization of calcified coronary arteries with good image quality and high clarity.

Keywords: Dual Source Photon Counting Detector CT; Coronary Artery Calcification; Ultra High Resolution Computed Tomography Angiography of Coronary Arteries

冠状动脉CT血管造影(CCTA)已成为可疑冠状动脉疾病患者诊断过程中不可或缺的一部分^[1]。双源CT包括能够将入射光子直接转换为电信号的半导体探测器元件^[2]。以前使用原型CT系统的高分辨率模式的模体研究与EID-CT系统相比,产生了更好的冠状动脉斑块和支架内可视化^[3]。在整体图像质量和冠状动脉钙化、支架和非钙化斑块的诊断质量方面,使用另一种原型CT获得的高分辨率CCTA也优于EID-CT^[4]。本研究的目的是评价在冠状动脉钙负荷高的患者中使用双源CT的超高分辨率CCTA的可行性和质量。

1 资料与方法

1.1 研究资料 纳入2022年2月至2024年2月期间连续在经导管主动脉瓣置换术前接受超高分辨率方案的CT的20名患者。研究得到了医院伦理委员会的批准,并符合赫尔辛基声明,所有患者均获得书面知情同意书。22名符合条件的患者接受了超高分辨率CCTA检查。20名患者(6名女性,14名男性;平均年龄79±10岁;平均体重指数25.6±4.3公斤/平方米)最终纳入本研究。冠状动脉钙化积分中位数为479(四分位数范围251-834)。数据采集时的平均心率为76±11次/分钟。所有患者均行超高分辨率CCTA检查。平均扫描时间8.9±2.0秒,平均CTDIVOL 38.2±11.1mGy。

1.2 研究方法采用CT系统对患者进行检测,扫描方案包括平扫、超高分辨率CCTA及随后的CT主动脉造影术。超高分辨率CCTA采用回溯性心电门控双源螺旋模式,管电压为120kV,根据扫描仪上的默认协议,使用自动管电流调制将管电流时间乘积调整到图像质量(IQ)水平。音调系数由扫描仪根据心率自动选择,范围在0.19到0.32之间。龙门旋转时间为0.25秒,实现了66毫秒的时间分辨率。根据患者的体重,加碘造影剂50~80毫升,然后用18号导管向肘前静脉注入20毫升生理盐水(0.9%氯化钠),按重量计算流量(3.3~4.4毫升/S)。起始点为90千伏,阈值为140HU的升主动脉的团注示踪。将心电脉冲窗口设置为R-R间期的30%至80%的固定值。在超高分辨率模式下,探测器像素被单独读出,并使用20keV的单一能量阈值使用整个吸收光子光谱。

采用Bv40、Bv44、Bv56、Bv60、Bv64、Bv72、Bv80和Bv89这8个锐度级别的血管核重建超高分辨率CCTA图像。分别选择运动伪影最少的R-R相,层厚0.2mm,层厚0.2mm,采用一种新的量子迭代重建算法。超高分辨率CCTA图像层厚0.6mm,层厚0.3mm,层厚0.6mm,层厚0.3mm,采用Bv40核和强度4的QIR作为参考标准。可在重建CT图像中显示的最大空间频率(p最大值)由FOV值和矩阵大小确定。通过将二次感兴趣区域(ROI)放置在水模的均匀中心来计算先前列出的每个重建核的NPS。用二维NPS曲线的径向平均值计算一维NPS剖面。提取NPS的最大空间频率(f峰)来比较8个重建核的噪声纹理。为了降低分析的复杂性,将FOV设置为150。150平方毫米,矩阵大小为1024。所有重建均使用1024个像素。对于评估的所有重建内核,使用这些设置时,ρ最

大值优于ρ10值,但Bv89内核除外。使用开源软件ImQuest进行 测量。图像噪声、信噪比(SNR)和对比噪声比(CNR)由一位阅读器 V.M.测量,感兴趣区位于左冠状动脉主干起始处的主动脉腔内和 心外膜脂肪组织(EAT)内。图像噪声定义为在升主动脉的感兴趣区 中测量的衰减的标准偏差^[5]。

患者的主观图像质量由两个独立专科医师评估,图像最初以 预定义的窗口设置(宽度为1000HU;级别为250HU)显示,并允许 读者自行进行手动调整。分别用5点离散视觉标尺分析冠状动脉 斑块和邻近血管管腔的主观图像噪声和勾画。主观图像噪声评估 如下:分数5=没有像素化;4=轻微像素化不影响诊断信心;3=中 等像素化轻微限制诊断信心;2=像素化增加降低诊断信心;以及 分数1=诊断信心较差的重大像素化。冠状动脉斑块和邻近管腔的 分析如前所述:评分5=斑块显示良好,没有可察觉的斑块和邻近 冠状动脉管腔的精确显示;4=斑块和管腔显示良好和高于平均水 平;3=可接受的斑块和管腔显示;2=次佳;和评分1=不可接受的 斑块和管腔显示。

1.3 统计学方法使用R统计软件4.1.1版进行分析。分类变量以 计数和百分比的形式表示。采用Shapiro-Wilk检验对正态分布 的连续变量进行检验。定量变量在正态分布时用均值±标准差 表示,在非正态分布时用中位数和四分位数范围(IQR)表示。用 Friedman检验来检查重建之间的数量差异。主观形象评价的读者 间一致性用克里彭多夫α系数量化(0,无协议;1,完全一致)。采 用Friedman检验和Wilcoxon符号秩后检验评估主观分析中的差 异。多重比较采用Benjamini-Hochberg法调整P值。双尾P值低 于0.05被认为具有统计学意义。

2 结 果

2.1 重度主动脉狭窄CT分析 CCTA在所有患者中都是可行 的。在Bv40核和0.6 mm层厚重建的患者中,虚化伪影最大 (55.2%±9.8%),血管锐度最低(477.1±73.6 ΔHU/mm),信噪 比最高(27.4±5.6),CNR最高(32.9±6.6),噪声最低(17.1±2.2 HU)。考虑到薄片厚度为0.2 mm的重建,图像噪声、信噪 比、CNR、血管清晰度和虚化伪影在不同核之间存在显著差 异(P<0.001)。随着内核清晰度的提高,信噪比和CNR不断降 低,图像噪声和血管清晰度增加,其中Bv89内核的清晰度最高 (2383.4±787.1 ΔHU/mm)。如图1-图3所示,用不同的核、视野 和矩阵大小重建的具有代表性的超高分辨率CCTA图像,显示了带 有钙化冠状动脉斑块的血管节段。

2.2 严重主动脉狭窄超高分辨率CT轴位图像如图2所示,示例为88岁男性严重主动脉狭窄患者的超高分辨率CCTA(层厚,0.2mm)与CT的轴位图像。左前降支远端左主干至近端可见混合斑块。注意部分钙化斑块在更高的核强度下的轮廓不断改善,显示出相当优越的小斑块的解剖细节。

2.3 超高分辨率CT的左主干和近端左前降支轴位图像 如图3 所示,图例为来自超高分辨率CCTA(层厚,0.2mm)和CT的左主 干和近端左前降支的轴位图像。尽管钙化斑块的边缘在低内核强 度的重建图像上具有模糊的外观,但具有中等内核强度的重建(例 如,Bv64)能够在具有高内核强度的重建(例如,Bv89)的图像噪 声增加阻碍血管内腔显示之前,很好地描绘钙化斑块和邻近的血 管管腔。

图1 一位88岁男性重度主动脉狭窄患者,用CT超高分辨率CCTA(层厚0.2mm)重建左前降支的影像(A)和曲面重建(B)。 图2 严重主动脉狭窄患者的超高分辨率CCTA(层厚, 0.2mm)与CT的轴位图像。

图3 来自超高分辨率CCTA(层厚, 0.2mm)和CT的左主干和近端左前降支的轴位图像。

3 讨 论

本研究评估了通过这种超高分辨率扫描模式获得的CCTA图像的质量,包括对高冠状动脉钙负荷患者的最佳重建核、视场和基质大小的分析^[6]。在患者中,超高分辨率CCTA是可行的,可以提供高质量的冠状动脉树图像。虽然使用Bv40内核和0.6mm的切片厚度重建的图像具有最高的信噪比和CNR,以及最低的图像噪声,但血管清晰度和虚化伪影最差^[7]。使用0.2mm的薄片厚度,Bv89内核的重建获得了最高的血管清晰度,但考虑到伪影,Bv72内核的重建优于Bv89内核^[8]。有研究认为^[9],当使用较高核强度(Bv64和Bv72)和适当的视场和基质尺寸时,冠状动脉斑块和邻近血管腔的图像质量很好。在Bv40核到Bv64核的重建过程中,噪声纹理特征显示出逐渐向更高的空间频率转移。NPS的峰值与图像噪声中的主导频率有关,因此随着核锐度的增加,图像噪声纹理越细^[10]。然而,对于邻近的血管管腔与我们的伪影量化结果一致,在使用Bv72内核进行重建时产生的伪影最少^[11]。

这种详细的解剖信息可能与临床相关,因为目前人们对非钙 化和部分钙化的冠状动脉斑块的可视化非常感兴趣,因为这些斑 块类型与未来的不良冠状动脉事件反复相关^[12]。带有CT的超高分 辨率CCTA能够非常精确地表征部分钙化的斑块,区分未钙化和钙 化的部分,潜在地改善对容易破裂的斑块的识别^[13]。超高分辨率 CCTA以双源螺旋模式采集,回溯性心电门控,准直120。这一扫 描范围导致我们的患者CCTA的平均扫描采集时间为8.9±2.0秒, 略长于使用没有超高分辨率的"标准"CCTA协议的采集时间^[14] 尽管如此,所有患者都设法遵守了所需的屏气时间。另一个问题 与心电门控的类型有关。在这项研究中,包括接受CT计划经导 管主动脉瓣置换术的患者,按照推荐的方式使用了具有固定心电 脉冲窗口的回溯性心电门控双源螺旋模式,这解释了我们相对较 高的辐射剂量^[15]。值得注意的是,可变的心电脉冲窗口设置和连 续的、前瞻性的心电门控数据采集在超高分辨率模式下也是可行 的,并且是我科CCTA排除慢性冠状动脉综合征患者冠状动脉病变 的标准^[16]。

最近,有研究报道了应用超高分辨率参数的CCTA的图像质 量与原型14例患者行CT扫描,并与高分辨率EID-CT扫描进行比 较^[17]。在该研究中,CT在整体图像质量以及冠状动脉钙化、支架 和非钙化斑块的显示方面优于EID-CT。在一项模体研究中^[18],冠 状动脉管腔和非钙化斑块的检测指数增加,支持了这些发现。在 他们的研究中,使用64%的准直度获得了带有原型CT的高分辨率 CCTA。0.275mm,层厚为0.25mm。我们研究中使用的临床CT 提供了优越的扫描和重建能力,其特征是准直度为120。0.2mm 和0.2mm的切片厚度^[19]。重要的是要注意,在当前的CT超高分 辨率模式下没有可用的光谱信息,CT固有的光谱能力允许应用各 种基于双能量的后处理算法^[20]。

总之,使用CT的超高分辨率CCTA是可行的,并且能够使用 专门的锐利血管核以优异的空间分辨率显示钙化的冠脉。使用 Bv64内核(视场为200),可以以最佳质量表征和描绘邻近管腔的 冠状动脉斑块。

参考文献

- [1]MCCOLLOUGH C H. Reclassification of coronary artery disease status using photon-counting CT[J]. Radiology, 2024, 310 (2): e240098.
- [2]WOLF E V, HALFMANN M C, VARGA-SZEMES A, et al. Photon-counting detector CT virtual monoenergetic images for coronary artery stenosis quantification: phantom and in vivo evaluation[J]. AJR Am J Roentgenol, 2024.

- [3] WANG Y, ZHANG Y, Di A, et al. Feasibility of weight-based tube voltage and iodine delivery rate for coronary artery CT angiography[J]. Curr Med Imaging, 2024.
- [4] PATEL V, PATEL J, GAN J, et al. Reporting of coronary artery calcification on chest CT studies in patients with interstitial lung disease[J]. Clin Radiol, 2024, 79 (4): e532-e538.
- [5] LYU L, PAN J, LI D, et al. A stepwise strategy integrating dynamic stress CT myocardial perfusion and deep learning-based FFR(CT) in the work-up of stable coronary artery disease[J]. Eur Radiol, 2024.
- [6] PEZEL T, HABERT P. Can coronary CT angiography be used as the new goldstandard for quantifying coronary artery disease burden[J]. Diagn Interv Imaging, 2024.
- [7]LI S Y,ZHONG J,QIAO H Y,et al.FFR CT and static computed tomography myocardial perfusion imaging for therapeutic decision-making and prognosis in patients with coronary artery disease[J].J Thorac Imaging, 2024, 39 (2):101-110.
- [8] WANG Z, ZHU D, HU G, et al. Enhanced CT imaging artificial neural network coronary artery calcification score assisted diagnosis [J]. Technol Health Care, 2024.
- [9]ZHANG Z, LIU Z, HONG N, et al. Effect of a second-generation motion correction algorithm on image quality and measurement reproducibility of coronary CT angiography in patients with a myocardial bridge and mural coronary artery[J]. Clin Radiol, 2024, 79 (3): e462-e467.
- [10] MEYER H J, DERMENDZHIEV T, HETZ M, et al. Coronary artery calcification detected by initial polytrauma CT in severely injured patients: retrospective single-center cohort study[J]. Eur J Trauma Emerg Surg, 2024.
- [11] HOU C, LU Y, MA Y, et al. Investigation of the predictive value of a novel algorithm based on coronary CT angiography regarding fractional flow reserve and revascularization in patients with stable coronary artery disease[J]. Heart Vessels, 2024, 39 (3): 195-205.
- [12] PIERRO A, TOTARO A, APOLLONIO B, et al. Coronary artery evaluation during ECG-gated CT of the thoracic aorta: Do not consider it a negligible clinical information[J]. Curr Probl Cardiol, 2024, 49 (2):102333.
- [13] PARK C, LEE B C, JEONG W G, et al. Coronary artery calcification on lowdose lung cancer screening CT in South Korea: visual and artificial intelligence-based assessment and association with cardiovascular events[J]. AJR Am J Roentgenol, 2024.
- [14]LANGENBACH M C,LANGENBACH I L,FOLDYNA B, et al. Advanced CT measures of coronary artery disease with intermediate stenosis in patients with severe aortic valve stenosis[J].Eur Radiol, 2024.
- [15] HALFMANN M C, BOCKIUS S, EMRICH T, et al. Ultrahigh-spatial-resolution photon-counting detector CT angiography of coronary artery disease for stenosis assessment [J]. Radiology, 2024, 310 (2): e231956.
- [16] MINGELS C, SARI H, GOZLUGOL N, et al. Long-axial field-of-view PET/ CT for the assessment of inflammation in calcified coronary artery plaques with[(68) Ga]Ga-DOTA-TOC[J]. Eur J Nucl Med Mol Imaging, 2024, 51(2): 422-433.
- [17] TSUGU T, TANAKA K, BELSACK D, et al. Impact of vessel morphology on CTderived fractional-flow-reserve in non-obstructive coronary artery disease in right coronary artery[J]. Eur Radiol, 2024, 34(3):1836-1845.
- [18] SRISELVAKUMAR S, KNIPE H. Unsuspected finding of right coronary artery occlusion on nongated CT chest [J]. Radiol Case Rep, 2024, 19 (3): 1026-1030.
- [19]GUO W, ZHAO S, XU H, et al. Comparison of machine learning-based CT fractional flow reserve with cardiac MR perfusion mapping for ischemia diagnosis in stable coronary artery disease[J]. Eur Radiol, 2024.
- [20] BAUMEISTER T, KLOTH C, SCHMIDT S A, et al. On-site CT-derived cFFR in patients with suspected coronary artery disease: feasibility on a 128row CT scanner in everyday clinical practice [J]. Rofo, 2024, 196 (1): 62-71.

(收稿日期: 2024-03-20) (校对编辑: 韩敏求)